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ABSTRACT

This paper describes s new statistical approach to image segmentation.
Making use of Gibbs distribution models of Markov random fields a dynamic
programming based segmentation algorithm is developed. A number of 1
examples are presented which give an indication of the potential of this
approach.
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I. INTRODUCTION

) This report presents a new statistical approach to the image
segmentation problem. By mouelling image data as a Markov random field
characterized by a Gibbs distrihution, a dynamic programming algorithm is
developed. The primary contribution of the paper is this new near optimal
method for processing scenes described by the non-causal Gibbs model. ~

Image segmentation, the process of grouping image data into regions
with similar features is a component process in image understanding systems
and also serves as a tool for image enhancement. As such it has received
considerable attention in the literature. Many techniques work well on
noise free images with slow spatial variation in intensity. However, when
the data is moisy or textured, these algorithms become less reliable. In
this case it can be advantageous to statistically model the noise and any
texiure which is random in nature. Furthermore, one must also take
advantage of two-dimensional spatial ergoticity to average the effects of
noise. If a region is spatially ergodic then a pixel and its neighbors
will have similar statistical properties. In its simpler forms, the Gibbs
model can be used to exploit this type of spatial continuity, and this is
its primary role in the segmentation algorithm.

Use of the Gibbs distribution dates back to the work of Ising [1] in
1925 who modelled molecular interaction in ferromagnetic materials, and it
has received considerable attention in both the statistical mechamics and
statistics literature [2]. However, only recently have attempts been made
to apply it to problems in image processing. In [4], the autobinomial form
of the Gidbbs distribution was used to model texture. The algorithm in [5]
segments textured images hierarchically operating on successively smaller
blocks and uses Gibbs distridbutions to model texture. To our knowledge,
the work in [6] represents the first application of the Gibbs model to
Image Segmentation. The algorithm in [6] is highly parallel in nature with
the flavor of a ’'relaxation’ algorithm and requires a number of iterative
passes on the image data. The algorithm we propose processes the datas im a
raster scan fashion, and only requires a single scan of the data. It will
be important to further study the trade-offs in the various algorithms.

(:; The report is organized as follows. Section—%f‘defines the
segmentation problem in a statistical framework, introduces some motation,
and presents some background on Markov random fields. Sectio then
presents the dynamic programming algorithm in detail for the case of
segmenting images consisting of uniform inﬁenslty regions in high levels of
additive white Gaussian noise. Section-¥¥ presents results of applying the
algorithms to some experimentally generated images consistant with this
model ss well as some synthetic aperture radar images which are clearly
inconsistent with the assumed model., These results clearly demonstrate the
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‘>applicnbility of the technique to realistic data as well as the robusgtness
of the algorithm with -spect to modelling assumptions. In Section ¥, some {

T A

comments and concluding remarks are given, and extensions to this work
which are in progress are t ‘iefly ontlined. |

)

tas s

T @ R

) L - - .
) L R T IR LI - O S S S S
L) el DRI e e e T e et T e e te T e T e e T . R
"'."J"‘.'.:'n'.‘."-Z‘_'._'.:.'-.m‘.L;_g PO WHIPYRE W SR Wl VTR WY W Y N 1P S W X PV iy W ey P




v T Y Aliar .

ol i e ra v AL RO M TR ) P

L At~ R onn R P SE S S PR - = s = - {

AL .

At NI

Ny ~
{
»
Qf II. PROBLENM FORK./LATION AND MATHEMATICAL BACEKGROUND
3
‘ Preliminary Definitions
e
;5 Let a class of scenes be characterized by a discrete finite random

field X = [xij] of size (N1XN2)' and let a realization of this field or a
specific scene be represented by the matrix x = [xij]. It will be assumed

that each pixel (i, j) can belong to one of N distinct region types and

that xij = m if pixel (i, j) is a member of region m, mell, 2, ..., M].

Associated with a specific sceme is s set of K, (NIXNZ) observation

matrices y = lyk } f . yk = [yi: }J. For simplicity of expositiom, we will

sssume K = 1 and simply define y1 to be y = [yij]' However, it should be

pointed out that the algorithms presented below extend trivislly to the
case of multiple observations such as with Landsat data. Since regions can
. be textured or contain observation noise the range space of yij is larger

than that of xij' Thus y will be sssumed to be a realization of a real

« valued random field Y = [Yij]' The general model which can we will employ
is
Yij = Fij(xij) + 'ij ' (1)
The field 'ij is a raandom noise field, and the mapping Fij can be used

to characterize texture models. In the case which will be described in
most detail, & region will be characterized by constant intemsity so that

) = T if xij = m (2)

Furthermore, Nij will be assumed to be a white Gaussian field with zero

mean and variance cz. i.e.

~ 2
'ij }AIQO. o) (3)

Fij(xij
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3 MAP Segmen on
b
i The segmentation problem can now be simply stated as follows. Given
g the observation matrix y = [y, j] find an estimate x = [x, j] of the scene
{: realization x = [xij]. The al_:orithm presented below attempts to maximize
f{ the posterior probability or likelihood of x given y. In particular if
2 P(.) is an appropriate probability measure, then one would like to find the
! estimate x which maximizes P(X =x | Y = y). Using Bayes rule
'-:’
:ﬂ -~ ~ ~
‘;:: P(X=x | Y=y) = P(Y=y | X=x) P(X=x) (4)
4‘~ P(Y=y)

Since P(Y=y) is independent of the estimate ;. we can equivalently maximize

P(X=x, Y=y) = P(Y=y | X =3) P (X = X) (s)

or
1n P (X=x, Y=y) = In P(Y=y | X=x)

+ 1n P(X=x) (6)

The dynamic programming algorithm presented in the next section is an

approximation to one which guarantees finding the % which maximizes (6).
It should be pointed out that the difficulty in maximizing (6) is that it
is a joint log-likelihood for all the image data. It does not simply

describe the likelihood of a single pixel. Ib particular the maximizing
N,N

;. is one of M 12 possibilities.

Markov Rapdom Fields snd the Gibbs Distribution

Obviously, any processing algorithm for maximization of (6) will
depend critically on the form of P(X=x) and P(Y=y | X=x). In this
subgsection, these measures are defined in the case where X is a Markov

random field characterized by a Gibbs distribution, and Y is given by (1) -
(3).

e
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To begin it +i; 1 be helpful to introduce some additional notation.
Let L de defined as . - NIXN2 lattice characterizing all pixel locations in

the scene, i.e.

L={(i,):1 €1 <N, 1§ ENy) (1)

Next let “ij define a set of neighbor sites for the pixel (i, j) but

excluding (i, j) itself. Two simple neighborhoods are depicted in figure
1. These are:

"i; “tam:0¢ G-D2sG-w2cn (8)
qi§={(l. m:0< -2+ (G-w2< 2 (9)

Fipally, define ny to be the collection of all neighborhoods in L, or a

neighborhood system. Then nLl and an charscterize the collection of all

neighborhoods ni} and “ijz’ i.e.
1 _ 1
n = (nij : (1,§) e L) (10)

2 2

Given this notation, a Markov random field can then be defined as

D nit 1:

A random field on a lattice L is a markov random field with respect to
a neighborhood system n if and only if

P(X, =x l x, =1x

ij ij im . (1. Il) e Lp (lu.) #(ioj)

1m

P(xijzxij I Xl-= X (l,n)enij) (12)

If in additiom to (12) P(X = x) > 0 for all realizations x, then X can be
characterized by & Gibbs distribution defined on the neighborhood system
nLIZI. [3]. 1In order to define the Gibbs distribution it is necessary to

introduce the notion of the cliques of a meighborhood system. Simply, a
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clique is any set of nixel locations for which any two are neighbors of
each other. Figure 2 saow the types of cliques found for the ni and ni
neighborhood systems. Let 3(nL) be the collection of cliques for the
neighborhood system n - The Gibbs distribution can now be defined as

follows

Definjtjon 2:

The Gibbs probability distribution has the form

eU(x)

P(X = x) = % (13)

Blx) = ) Vc(x) (14)

ceC(nL)

A enpergy function
Vc(x)g potential associated with clique C
. U(x)
e

2

X

(15)

ne»

partition function

As can be seen from the definition Z is simply a normalizing constant so
that the sum of the probabilities of all realizations, x, add to one. Thus
the key functions in determining the properties of the distribution are the
potential functions Vc(x). The only limitation on Vc(x) is that it only

depend on the values of the pixels in clique c¢c. We will consider
homogeneous fields where the form of Vc(x) is fizxed by the structure of the

clique ¢ and not its location in the lattice. For the segmentation
algorithm discussed in the next section, the potential functionms were
chosen to exploit spatisl continuity, and for simplicity of calculation.
¥We have modelled the region clustering as being characterized by a Markov

random field over the neighborhood system ni. The most general form we use
for the potential functions Vc(x) are given in Table 1.

''''''''''
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4
: Clique
; No. Structure Potential
1 . ((i,j)] Vc(x) =a if LT
2 bl [(i,3),, j+1)] Vc(x)= B, if T %y ea
—Bl otherwise
3 = ((iij)l(i_llj)] Vc(x) = Bz if xij = xi +1, j
: -Bz otherwise
) 4 .. [(ioj)n(i-lnj"’l)] Vc(x) = B3 if xij = xi_l'j_,_l
—Bs otherwise
5 .. [(i,3),(i+1, j+1)] V;(x) = B4 if xij =x, ., 1, j+1
-54 otherwise
6 34 (4,3, i+, §), Vo(x) = v, if anl x;; in o are
1
) * (i, j+1)] equal
y el otherwise
\ 7 S [(i,§),0(i-1,3§), (i,j+1)]) Ve(x) = Y, if all xij in ¢ are
‘ equal
i ~7, otherwise
\
\ 8 . [(1,3),0i,3§+1),(i+1,§+1)] V;(x) = 75 if all ‘ij in ¢ are
] equal
~13 otherwise
‘
: 9 o3 ((i,§),(1,3+1),(i-1,j+1)] V(x) = 7, if al1 x;y in ¢ are
1 equal
“T, otherwise
. 10 33 [(i,5).0i-1,5),(1, j+1), Vc(x) = o, if all 3 in ¢ are
= (i, j+1)] equal
:" -0y otherwise
- T LE1
c - Potential Funct.c=s for Segmentation Algorithm
b
7
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The parameters a., ﬂi, Y0 9y need to be estimated for certain classes
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< of scenes. Although this is a difficult problem, there are methods in the
. literature for estimating these parameters, see [3] - [5]. However, we are
not using the Gibbs distribution to model textures or detailed shape. We
N just want to model the fact that regions are clusters of pizels, i.e.
spatial continuitv within regions. For the exsmples in section IV, we use
only cliques 1-5, an. in many cases just cliques 2 and 3, e.g. Y,;=0,;" 0.

The nonxero parameters were chosen by trial and error. Although for a
given signal to noise rati. the algorithm was relatively insensitive to the
choice of these values, as the signal to noise ratio changed we found it
necessary to modify the values. We are presently studying this phenomena
more carefully as well as determining new schemes for estimating these
parameters for the context in which they are being used.

Finally, since a particular realization of the Gibbs field, x, assigns
each pixel to one of the M region types, using the Gaussian noise model an
appropriate form for P(Y=y | X=x) is

N
1 1 2
P(Y=y |X=x) =T TT  Greyas *lGgs (-t (16)
=1 (i,j)eSm J
Sn ={ (i,j): xij =m} (17)
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1II. NEAR OPTIMA . MAP SBEGMENTATION

In this section, an ptimal algorithm is posed for processing images
consisting of 2 few rows. The complete near-optimal algorithm is then
obtained by applying this optimal processor on overlapping strips of the
larger NIXN2 image. This algorithm will be near optimal when correlation
between the random variables in xij drops rapidly as their vertical
distance increases. This assumption appears reasonable in the sense that
it can often be shown for one dimensional Markov chains. However,
calculation of correlations in a Markov random field is extremely difficult
even for the simplest case (Ising Model [2]), and is an unresolved problem
in the statistics literature.

First consider the problem of segmenting a DXN2 image, D << Nl' Let

2(.) denote a log—likelihood function. Using the Gibbs likelihood and the
conditional data likelihoods derived in the last subsection of section II,
we can write the following expression for the joint log—likelihood of the

image data y and 8 realization x of the Gibbs field X:

Y=y, X=x) = Y=y | X=x) + %(X=x) (18)
9(X=x) = -1nZ + } V. (x) (19)
ceCL(n’)
M
-DN
ur=y | X=0) = 2 m@ned)- ) ) ;i (yij—rm)z (20)

n=1 (i.j)esﬂI
Observe that we can calculate (18) recursively as follows

lN = (Y=y, X=x)

-DN
(1] 2

1n(2n02) -ln Z

o
1]

M
= \ - . —r )2
% % * 2 Vc(x) } } 202 (yij rn)

~ x
ceck™lr K m=1 (4,5)eS_
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Ck"l’ k_ {ceC\ 2): ¢ contains only pixels in column k or only pixels

in columns k - 1 and k }
k . :
S ={(i,j): x.., =m, j=%k} 1<i W
n ij

This recursion in conjunction with the principle of optimality allows

formulation of a forward dynamic programming algorithm [7] for finding x.
The state space associated with the dynamic programming algorithm has

dimension ID since there are HD possible segmentations of each column of
the DXN2 scene. This implies that the algorithm would have N2 iterations

with on the order of M2D calculations during each iteration. Thus
this algorithm may omnly be computationally tractable for small values of M
and D, e.g. 2 < M, D ( 4, Although using the technique described below,
full size images can be processed with reasonable computation speeds, we do
only recommend the algorithm be implemented for segmenting images into at
most M=4 region types. We are presently working on a method which allows
this algorithm to be applied iteratively to segment images for which M > 4.
More will be said regarding this in Section V. Since this is a standard
dynamic programming application, details will not be given. However, two
important remarks are in order.

Remark 1

Observe that the value of o is independent of any segmentation ;. and
hence the algorithm can be initialized by setting 0o - 0. In particular,

there is no need to undertake the difficult task of calculating the
partition function Z.

Remark 2

In order to calculate potentials for all cliques in column one and row
one of the (DXNz) image, it is necessary to assume a segmentation for a

ficticious column zero and row zero. This corresponds to a boundary
condition for the Markov random field X. An appropriate choice for these
boundary conditions will be discussed below.

In order to use the dynamic programming algorithm described above
which is capable of optimally processing a DXN2 strip of anm NIXN2 image
N1>)D' we will assume the random variables xij and xi+D i for all (i,j) to
have negligible correlation or covariance. Thus, the segmentation for row
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i should be negligib ~ impacted by the segmentation of row i+D. In view of
this, the complete se, ntation procedure is described by the following
algorithm.

Segmentation Algorithm
Step 0) Choose a value for D, 2 < D ( 4,

Step 1) Set I =1

Step 2) Apply Dynamic Programming Algorithm to rows I through I+D-1
Step 3) Store the segmentation for row I
Step 4) Set I = I+1

Step §) If I ¢ NI-D+1‘ go to 2

Step 6) D = D-1
Step 7) If D)1, go to2
Step 8) Stop

To summarize, the dynamic programming algorithm is applied to
overlapping image strips of width D, but only the segmentation of the first
row of that strip is used. For example, the processing of rows 1 through D
yields a segmentation for row 1, and the processing of rows 2 through D+1
yields a segmentation of row 2. Under the correlation assumption above,
this algorithm is near optimal since the data in row I + D will have little
impact on the segmentation of row I.

As pointed out in Remark 2 above, the strip dynsmic programming
algorithm requires a fixed segmentation or boundary condition for row I-1
and column 0. For I =1, (i.e. row 0) and column zero, we arbitrarily

sssume all pixels to be backround pixzels, i.e. ;iO - ;Oi = Hb where Ibe (1,
2, ..., M) and "b is the assumed background intensity. Although this is

somewhat arbitrary, if the correlation assumption holds both vertically and
horizontally, it will have negligible impact on the segmentation of the
scene for i ) D and j > D. For I > 1 we use the fixed segmentation of the
previous row to initialize the strip processor.
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IV.  EXANPLES

In this section, some >xamples are presented which are representative
of the performance of the alzorithm and which highlight some of its
properties. To begin, conside: figures 3 and 4. They show the results of
applying the algoirthm to (64 X 64) test images consisting of an object
either an ellipse or a diamond, on a background. Thus, M=2. For these
examples, the images were corrupted by additive white zero mean Gaussian
noise fields with variances such that the signal to noise ratio S/N=2 where
we define

- . B2 - - e e
AR AP SRR

:

lr, - r,|
s/IN = —+—2

The values of T. Ty and o were assumed known and the algorithm was
applied with D=4 and all Gibbs parameters set to zero except the Bi. For
the ellipse of Figure 3 ﬂi = 0.2 while for the diamond of Figure 4

ﬂi = 0.15 i=1,2,3,4. The top row of each figure from left to right show

the original and noise corrupted images, while the bottom row from left to
right show the Gibbs algorithm segmentation, and the result of filtering
the segmented image throuvgh a (3 X 3) median filter. As can be seen by
comparison of the two figures, the algorithm performs well at this signal
to noise ratio but as the magnitude of the Gibbs parameters decreases, the
algorithm becomes subject to more single pixel errors., This is consistent
with expectation since in this case the Gibbs distribution is weighted less
relative to the data terms in the likelihood function. Thus there is less
emphasis on spatial continuity in the likelihood.

Figures 5 — 7 show the result of applying the algorithm to an ellipse
in noise such that S/N = 1 using D=2,3,4. Although performance is best for
D=4 there is surprisingly little degredation in performance as D decreases.
In all three figures ﬁi=0.175. i=1,2,3,4 and all other Gibbs parameters

were zero.

Figures 8 and 9 show the results of applying the algorithm to s
dismond in noise such that S/N=1, In both figures D=4, however by
comparison of figures 8 and 9, one can see the improvement in performance
which can be obtained by assuming some additional prior knowledge of shape.
For Figure 8 pi=0.2 i=1,2,3.4 and all other Gibbs parameters were zero.

For Figure 9, realizing that the object had diagonal edges, the diagonal
cliques were emphasized relative to the horizontal and verticle cliques,
i.e. 31-32-0.15 and 33-3‘-0.23 while all other parameters were zero. For

........



K the latter case, ‘h¢ shape of the diamond was more obvious in the
segmentation.

For Figures 10 — 17, he algorithm was applied to two test images,
each containing M=4 region iypes. For Figures 10 — 15 D=2 while for
Figures 16 and 17 D=3. Ve uvsel D=2 to keep computation times down, however
as can be seen from Figures 12 - 15, while performance at S/N=1.§ is
reasonable, performance at S/N=1 is not. For M=4, we define the signal to
noise ration as

TATHTNTS S UL LT

e m !
i#j o

S ———
+ 8.4 4 .8

f

K

Increasing to D=3 did considerably improve performance at S/N=1, however
CPU time for this case on a VAX 11/780 was 60 minutes as compared to 4
minutes for M=4 and D=2 and 7 minutes for M=2 and D=4. This is our
motivation for going to the hierarchical scheme for handling multi-region
images (M > 3) which will be briefly outlined in Section IV below. We also
point out that we are rewriting our code to make use of look-up tables and
anticipate a factor of 10 or better improvement in computation speed.

Finally, for Figures 19 — 21, the algorithm was applied to (64 X 64)
sections of the synthetic aperture radar image shown in Figure 18. Figure
19 shows the result of applying algorithm to 2 small bay, while in Figure
20, there is & river with some bridges, and in Figure 21 there is a boat.
In all cases, we assumed ¥=2, and obtained Ty Ty and o by applying the

method of moments under the assumption that the (64)2 pixels in the scene
where samples of a random variable characterized by a distribution which
was & mixture of two Gaussian distributions. Each picture shows the
original scene and three segmentations corresponding to different Gibds
parameters. For Figure 19, proceeding clockwise around the picture we had
al=—.05 (white), az=.05 (black) and all Bi=°’125’ a1=a2=0 and all ﬂi=0.125.

a,=a, and all Bi=0.15. For Figure 20, we had, a1=.05 (white), a2=—.05
(black), and all Bi=0.1, a1=.05. az=~.05. and all Bi=0.125. a1=a2=0 and all
pi=0. For Figure 21 we had, c1=a2=0 and all Bi=0.2, al=a2=0 and all
Bi=0.35. c1=0.1. u2=-0.1 and all pi=0.35.

o, ¢ .
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V. CONCLUDING RCMATKS

This report has prese ted a new approach to segmentation of noisy
images. It uses the Gibbs cistribution to model spatial continuity or
clustering properties of regiors. The algorithm is recursive in nature,
requires a single pass on the data, and works well at low signal to noise
ratios.

Presently, two extensions to this algorithm are being developed. The
first allows computationally efficient segmentation of images with more
than two region types. If there are N region types, the two region
version of the algorithm is applied M-1 times. Thus computation time grows
linearly with the number of regions. To see how this can be done conmsider
the case where M=4 and for convenience, the regions have been labelled so
that r1< r2< Ty < Ty The two region algorithm can first be applied using

region means of T, and r3. Since r, < ry and T, > ry the result will be a

segmentation grouping regions 1 and 2 together, and regions 3 and 4
together. Next the two region algorithm is applied to the image using
region means of 2] and Ty However, only pixels classified as being in the

region with mean r, duering the first pass are classified in the second
pass. Those classified as being in the region with mean ry during the

first pass are ignored. This yields a three class segmentation into
regions 1, 2 and the combined regions 3 and 4. To separate regions 3 and 4
a third pass is made using region means T, and T, but ignoring those pizxels

assigned to regions 1 and 2 during the first pass. We feel that this
hierarchical algorithm will have little effect on the near optimality of
the overall approach, however we have no examples to show at this time.

The second extension is to textured images. In this case, instead of
modelling regions as being of constant intensity but imbedded in
uncorrelated noise, we assume textured regions are realizations of a second
Gibbs distribution. In this case, we are developing algorithms similar to
the one given above, but with the Gaussian (quadratic) data term in the
log-1likelihood replaced by terms associated with the second Gibbs
distribution characterizing texture. In this context, we are also
developing new methods for Gibbs parameter estimation in texture images.
The main difference between our work on texture modelling and that in [4],
[5] is that we are experimenting with different types of potential
functions Vc(x).

In conclusion, we feel that the applications of Gibbs models to
problems in image processing and image understanding are just beginning to
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emerge. It is potconiially a very powerful tool but there are still many
problems to be resolv.
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Figure 1 - Neighborhoods ”:j (a) and “%j (b)

(a) (b)

Figure 2 - Cliques for neighborhood systems nl (a) and nﬁ (b)
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Figure 3 - Segmentation of an ellipse with S/N=2
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Figure 4 - Segmentation of a diamond with S/N=2

et e it
B .
(]

et

[r-—,
v
3

9

3

S

L.

AP NP VA AT SR Wit VA V. VO U U S W W S UL VS DA D 2 P G SR




p=0 pue |=N/S Y3ILM €=0 Pue [=N/S UIm asd}(|d
9sdi||® ue jo uojjejudwbag - £ d4nbi4 ue jo uopjejuswbag - 9 aunbi4

21

2=0 pue X
L=N/S Y3 M asdi||d ue jo
uopjejuawbas - § aanby4 .

o

r

I-

-

«

.

i eee.

.-

e

-

)

.

D

.

-

‘

- .

- .

g .
C e I FE S L .- ® om0 v e- g v e e ey e e R SRR . e m t e s e " - w . .- PN .- .

et \.-. DENOEN . VO] . TRINXSAY, | e e e ,.-uhx.h.- Kyt & : A APy L4 .--..- *e% A S 3" + TR r-quou-. N ot.c. ‘ﬂ‘,



Callr SR AP SRP el e S it

- --1

22

L ]
Figure 8 - Segmentation of a diamond with S/N=1 and
. al B equal
: Figure 9 - Segmentation of a diamond with S/N=1 and rsi for
o diagonal cliques emphasized
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Figure 10 - Segmentation of a four region diamond test
image with S/N=2 and D=2
Figure 11 - Segmentation of a four region elliptical test
image with S/N=2 and D=2
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Figure 12 - Segmentation of a four region diamond test
jmage with S/N=1.5 and D=2
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. Figure 13 - Segmentation of a four region elliptical test
' image with S/N=1.5 and D=2
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Figure 14 - Segmentation of a four region diamond
test image with S/N=1 and D=2
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Figure 15 - Segmentation of a four region elliptical
" test image with 3/N=1 and D=2

K ., DRI . [T . . ..
L SRS S TP ol S A A P R TP WU St




~ y L -uted . L 2o aand LAl il Ss aeid Shagh el dbws Sirand Il St g
PN RN L g~ O i gl a A e o ia A A L U LS R IR D R S R A A A A 1

-
.3
L
R
>
&)
*
a

]

Figure 16 - Segmentation of a four region diamond
test image with S/N=1 and D=3

Figure 17 - Segmentation of a four region elliptical test
image with S/N=1 and D=3
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(512 X 512) SAR Image

Figure 18 -

(64 x 64)
11 bay

Figure 19 - Three segmentations of a
Section of SAR image containing a sma
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SAR image containing river with bridges
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Figure 20 - Three segmentations of a (64 x 64) section of

: Figure 21 - Three segmentations of a (64 x 64) section of
SAR image containing a boat
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